Feel free to rip this equation sheet from the rest of the test. If you don't, **please write your name** and lab weekday/time here.

Potentially useful math:

 $\sin \theta = \text{opposite/hyp} \quad \cos \theta = \text{adjacent/hyp} \quad \tan \theta = \text{opposite/adj} \quad a^2 + b^2 = c^2$ for $ax^2 + bx + c = 0$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Kinematics

$$\Delta \vec{x} = \vec{x}_f - \vec{x}_i \qquad \vec{v}_{ave} = \frac{\Delta \vec{x}}{\Delta t} \qquad \vec{a}_{ave} = \frac{\Delta \vec{v}}{\Delta t}$$
$$\Delta \vec{x} = \vec{v}_0 t + \frac{1}{2}\vec{a} t^2 \qquad \vec{v} = \vec{v}_0 + \vec{a}t \qquad v^2 = v_0^2 + 2a\Delta x$$

Forces

net
$$\mathbf{F} = m\mathbf{a}$$
 $W = m g$ $f_K = \mu_k F_N$ $f_S \le \mu_S F_N$

Constants and Unit Conversions

$$\begin{array}{ll} g=9.8 \ m/s^2 & 1 \ in=2.54 \ cm & 1 \ kg=2.24 \ lb \\ 1 \ m^3=1000 \ L \\ 1 \ m=3.28 \ ft \end{array}$$

Prefixes:

 $1 m = 100 cm = 1000 mm = 1,000,000 \mu m = 1,000,000,000 nm$ 1 kg = 1000 gWork = (component of force in the direction of displacement)(displacement) = F_{||} Δx Kinetic Energy: KE = $\frac{1}{2} m v^2$ RKE = $\frac{1}{2} I \omega^2$ Gravitational Potential Energy: GPE = mgy where y is change in vertical height
Momentum: momentum p = (mass)(velocity) angular momentum L = I ω Impulse: I = F Δt = Δp Elastic collisions only: $v_{1i} - v_{2i} = -(v_{1f} - v_{2f})$ This is a vector equation.
Torque = F $\perp r$ $\Sigma \tau$ = I α Moment of inertia definition: I = $\Sigma m R^2$ I_{disk} = $\frac{1}{2} M R^2$ Centripetal acceleration $a_c = v^2/r$ $\Delta x = r\Delta \theta$ $v = r\omega$ $a_{tan} = r\alpha$ $\omega = \omega_0 + \alpha t$ $\Delta \theta = \omega_0 t + \frac{1}{2}\alpha t^2$ $\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$ Newton's Universal Law of Gravity: $F = G \frac{m_1 m_2}{r^2}$ where r is center-to-center and G = 6.67 x $10^{-11} Nm^2/kg^2$